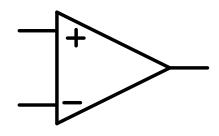
EE 435 Lecture 5

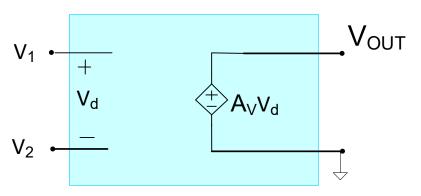
Single-Stage Low-Gain Op Amps

- Slew Rate
- The Reference Op Amp
- 5T Current Mirror Bias Op Amp
- Current Mirrors
- Signal Swing

Review from last lecture: Where we are at:

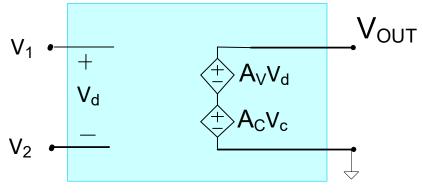
Basic Op Amp Design


Fundamental Amplifier Design Issues



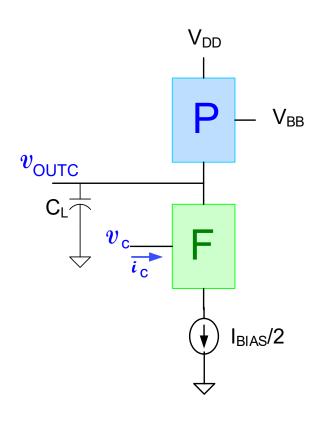
- Single-Stage Low Gain Op Amps
 - Single-Stage High Gain Op Amps
 - Two-Stage Op Amp
 - Other Basic Gain Enhancement Approaches

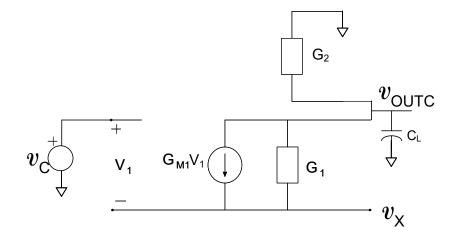
How is Common-Mode Gain Modeled?


If Op Amp is a Voltage Amplifier with infinite input impedance, zero output impedance, and one terminal of the output is grounded

Ideal Differential Voltage Amplifier

$$V_d = V_1 - V_2$$



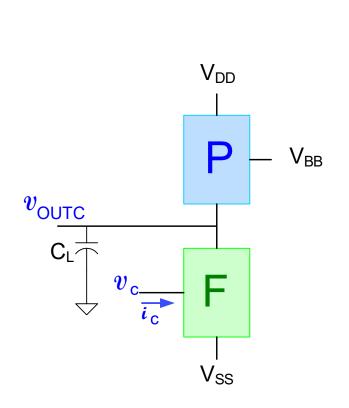

Ideal Voltage Amplifier

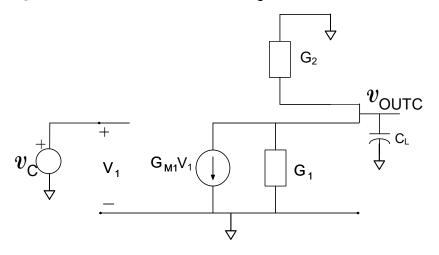
$$V_d = V_1 - V_2$$
 $V_c = \frac{V_1 + V_2}{2}$

Performance with Common-Mode Input

Consider tail-current bias amplifier with i_c =0

$$v_{\mathrm{OUTC}}(\mathrm{sC+G_1+G_2}) + \mathrm{G_{M1}}v_1 = \mathrm{G_1}v_{\mathrm{X}}$$
 $v_{\mathrm{C}} = v_1 + v_{\mathrm{X}}$
 $v_{\mathrm{X}G_1} - \mathrm{G_{M1}}v_1 = v_{\mathrm{OUTC}}$ G₁


Solving, we obtain


$$v_{
m OUTC}$$
=0 thus A $_{
m C}$ =0

Common-Mode Half-Circuit

Performance with Common-Mode Input

Consider tail-voltage bias amplifier with i_c =0

$$v_{\mathrm{OUTC}}(\mathrm{sC+G_1+G_2})+\mathrm{G_{M1}}v_1=0$$
 $v_{\mathrm{C}}=v_{\mathrm{1}}$

Solving, we obtain

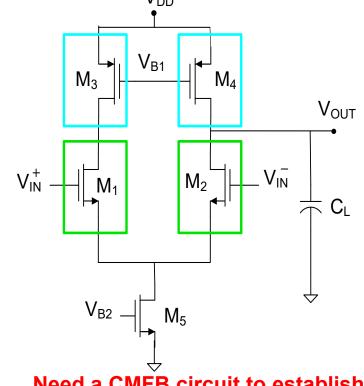
$$\frac{v_{\text{OUTC}}}{v_{\text{C}}} = A_{\text{C}} = \frac{-G_{\text{M1}}}{\text{sC} + G_1 + G_2}$$

This circuit has a rather large common-mode gain and will not reject common-mode signals

Common-Mode Half-Circuit

- Not a very good <u>differential</u> amplifier
- But of no concern in applications where $\,v_{\scriptscriptstyle
 m C}$ =0

Design of Basic Single-stage low-gain differential op amp


$$A(s) = \frac{-\frac{g_{m1}}{2}}{sC_{L} + g_{O1} + g_{O3}}$$

$$A_{o} = \frac{g_{m1}}{2}$$

$$g_{o1} + g_{o3}$$

$$GB = \frac{g_{_{m1}}}{2C_{_{L}}}$$

What are the number of degrees of freedom? (assume V_{DD}, C_I fixed, Symmetry)

Need a CMFB circuit to establish V_{B1}

Natural Parameters:

$$\left\{ \frac{W_1}{L_1}, \frac{W_3}{L_3}, \frac{W_5}{L_5}, V_{\text{B1}}, V_{\text{B2}} \right\}$$

Constraints: $I_{D5} \simeq 2I_{D3}$

$$I_{D5} \simeq 2I_{D3}$$

Net Degrees of Freedom: 4

Practical Parameters:

$$\left\{V_{EB1}, V_{EB3}, V_{EB5}, P\right\}$$

Will now express performance characteristics in terms of Practical Parameters 6

Design of Basic Single-stage low-gain differential op amp

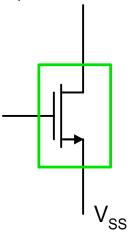
Single-Ended Output: Differential Input Gain

Practical Parameters: {V_{EB1}, V_{EB3}, V_{EB5}, P}

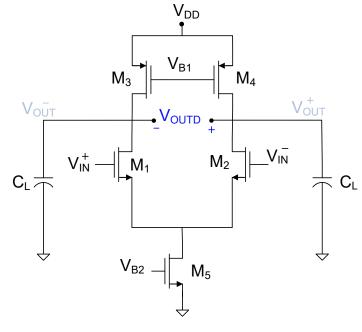
$$A_{0} = \left[\frac{1}{\lambda_{1} + \lambda_{3}}\right] \left(\frac{1}{V_{EB1}}\right) \qquad GB = \left(\frac{P}{V_{DD}C_{1}}\right) \bullet \left[\frac{1}{2V_{EB1}}\right]$$

 V_{IN} V_{IN} V

{V_{EB3}, V_{EB5}, P}


{Ver1, Ver3, Vers

Design Strategy with fixed A₀ and GB requirements:


- 1. Pick V_{EB1} to meet gain requirements
- 2. Pick P to meet GB requirements
- 3. Pick V_{EB3} and V_{EB5} to achieve other desirable properties (i.e. explore the remaining part of the design space)

Note: Design strategy may change if A₀ and GB are not firm requirements

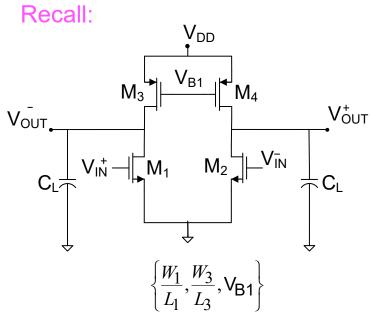
Quarter Circuit

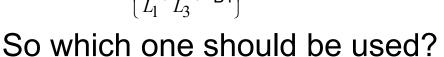
$$\frac{\mathbf{V}_{\mathsf{OD}} = \mathbf{V}_{\mathsf{O}}^{\scriptscriptstyle{+}} - \mathbf{V}_{\mathsf{O}}^{\scriptscriptstyle{-}}}{}$$

Differential Output : Differential Input Gain

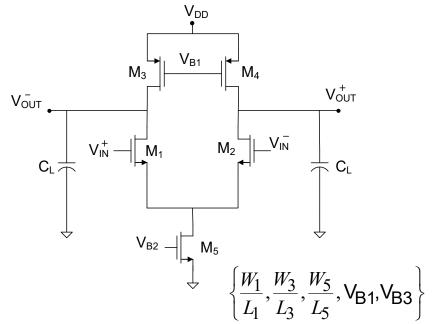
$$A(s) = \frac{g_{m1}}{sC_{L} + g_{O1} + g_{O3}}$$

$$\mathsf{A}_{_{\mathsf{O}}} = \frac{\mathsf{g}_{_{\mathsf{m}1}}}{\mathsf{g}_{_{\mathsf{O}1}} + \mathsf{g}_{_{\mathsf{O}3}}}$$


$$\mathsf{GB} = \frac{\mathsf{g}_{\scriptscriptstyle \mathsf{m}}}{\mathsf{C}_{\scriptscriptstyle \mathsf{L}}}$$

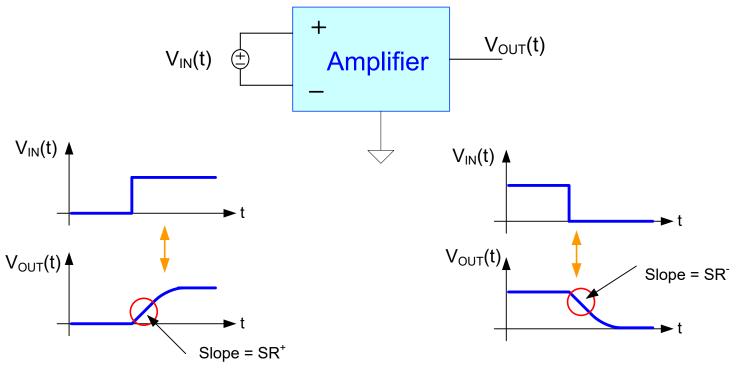

$$A_{_{0}} = \left[\frac{1}{\lambda_{_{1}} + \lambda_{_{3}}}\right] \left(\frac{2}{V_{_{EB1}}}\right) \quad GB = \left(\frac{P}{V_{_{DD}}C_{_{L}}}\right) \bullet \left[\frac{1}{V_{_{EB1}}}\right]$$

Have 4 degrees of freedom but only two practical variables impact A_0 and GB so still have 2 DOF after meet A_0 and GB requirements that can be used for other purposes

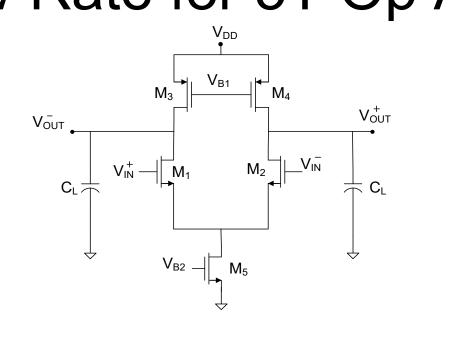

Need a CMFB circuit to establish V_{B1} or V_{B2}^{8}

A_D expressions valid for both tail-current and tail-voltage op amp

- Common-mode input range large for tail current bias
- Improved rejection of common-mode signals for tail current bias
- Two extra design degree of freedom for tail current bias
- Improved output signal swing for tail voltage bias (will show later)



- Fully Differential Single-Stage Amplifier
 - General Differential Analysis
 - 5T Op Amp from simple quarter circuit
 - Biasing with CMFB circuit
 - Common-mode and differential-mode analysis
 - Common Mode Gain
 - Overall Transfer Characteristics
- Design of 5T Op Amp
- Slew Rate

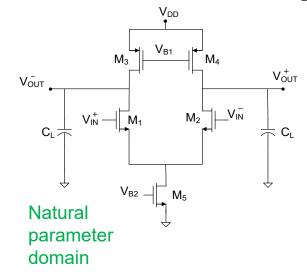

Slew Rate

Definition: The slew rate of an amplifier is the maximum rate of change that can occur at the output node

- SR is a nonlinear large-signal characteristic
- Input is over-driven (some devices in amplifier usually leave normal operating region)
- Hard input overdrive depicted in this figure
- Magnitude of SR⁺ and SR⁻ usually same and called SR (else SR⁺ and SR⁻ must be given)

Slew Rate for 5T Op Amp

With large step input on V_{IN}^+ , all tail current (I_T) will go to M_1 thus turning off M_2 thus current through M_4 which is $\frac{1}{2}$ of I_T will go to load capacitor C_1


The I-V characteristics of any capacitor is

$$I=C\frac{dt}{dV}$$

Substituting $I=I_T/2$, $V=V_{OUT}^+$ and $C=C_L$ obtain a voltage ramp at the output thus

$$SR^{+} = \frac{dV_{OUT}^{+}}{dt} = \frac{I_{T}}{2C_{L}} \quad \begin{array}{l} \text{Natural} \\ \text{parameter} \\ \text{domain} \end{array} \qquad SR^{+} = \frac{P}{V_{DD}2C_{L}} \quad \begin{array}{l} \text{Practical} \\ \text{parameter} \\ \text{domain} \end{array}$$

Slew Rate for 5T Op Amp

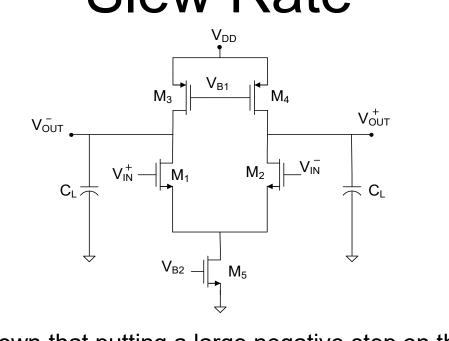
$$SR^+ = \boxed{\frac{I_T}{2C_L}}$$

$$SR^{+} = \begin{array}{c} \\ \hline V_{DD}2C_{L} \end{array}$$

Practical parameter domain

Can SR+ be expressed as product of model parameters and architecture

dependent term?


$$SR^+ = \frac{1}{2C_I} \left[I_T \right]$$

$$SR^{+} = \left[\frac{1}{2C_{L}}\right][I_{T}]$$
 $SR^{+} = \left[\frac{1}{V_{DD}2C_{L}}\right][P]$

Can SR⁺ be expressed in small-signal parameter domain? Question:

$$SR^+ = \frac{g_{o1}}{\lambda C_I} = \left| \frac{1}{\lambda C_I} \right| [g_{o1}]$$

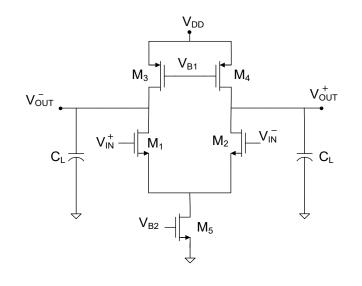
Slew Rate

It can be similarly shown that putting a large negative step on the input steer all current to M_2 thus the current to the capacitor C_L will be I_T minus the current from M_2 which is still $I_T/2$. This will cause a negative ramp voltage on V_{OUT}^+ of value

$$SR^{-} = \frac{dV_{OUT}^{+}}{dt} = -\frac{I_{T}}{2C_{I}} = -\frac{P}{V_{DD}2C_{I}}$$

Since the magnitude of SR⁺ and SR⁻ are the same, obtain a single SR for the amplifier of value

$$SR = \frac{P}{V_{DD} 2C_U}$$


15

Interdependence of Parameters

$$A_{0} = \left[\frac{1}{\lambda_{1} + \lambda_{3}}\right] \left(\frac{1}{V_{EB1}}\right)$$

$$GB = \left(\frac{1}{2V_{DD}C_{L}}\right) \bullet \left[\frac{P}{V_{EB1}}\right]$$

$$SR = \frac{P}{V_{DD} 2C_L}$$

Note: With this structure, the three key performance characteristics {A₀, GB, SR} can not be independently specified

e.g. If
$$V_{EB1}$$
 is picked to set A_0 , then $\frac{P}{V_{DD}C_L}$ will determine both GB and SR

Alternately, observe
$$SR = \frac{GB}{A_0(\lambda_1 + \lambda_2)}$$

The Reference Op Amp

Would like to have a specific amplifier, termed a Reference Op Amp, that can serve as a baseline so can compare performance of other op amp architectures with respect to that of the Reference Op Amp

Will use the 5T Op Amp as a Reference Op Amp for comparing single-stage Op Amps

Consider single-ended output performance :

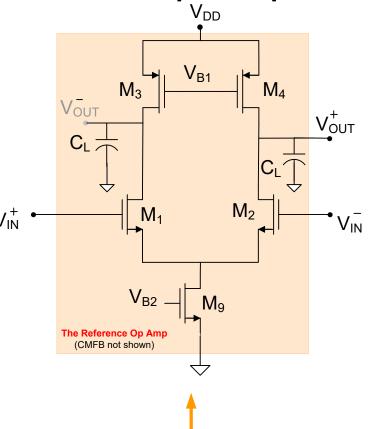
Will term this the **reference op amp**Will make performance comparisons of other op amps relative to this

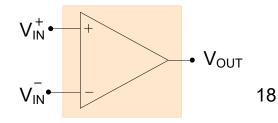
$$A(s) = \frac{\frac{g_{m1}}{2}}{sC_{L} + g_{O1} + g_{O3}}$$

mixed parameters

$$A_{VO} = \frac{1}{2} \frac{g_{m1}}{g_{O1} + g_{O3}}$$

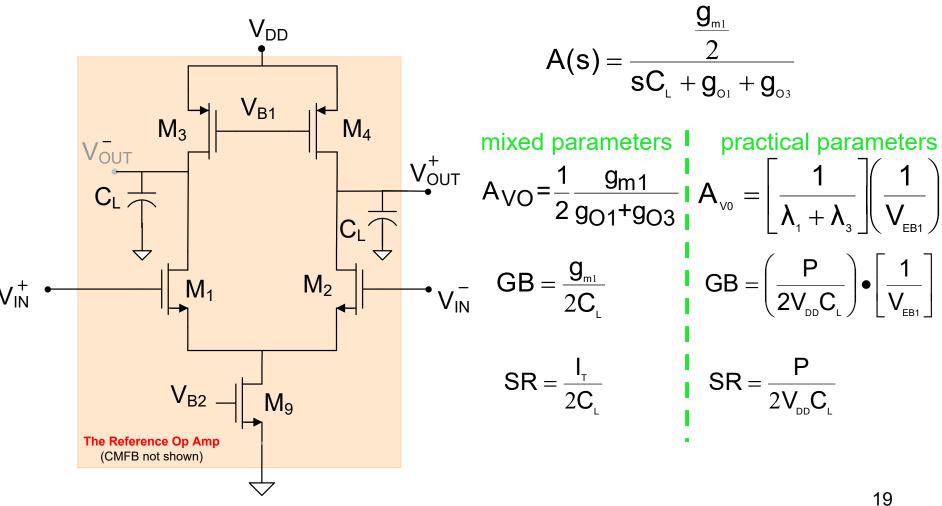
$$GB = \frac{g_{m_1}}{2C_{L}}$$


$$SR = \frac{I_{\tau}}{2C_{\iota}}$$


practical parameters

$$A_{V0} = \left[\frac{1}{\lambda_{1} + \lambda_{3}}\right] \left(\frac{1}{V_{EB1}}\right)$$

$$GB = \left(\frac{P}{2V_{DD}C_{L}}\right) \bullet \left[\frac{1}{V_{EB1}}\right]$$


$$SR = \frac{P}{2V_{DD}C_{L}}$$

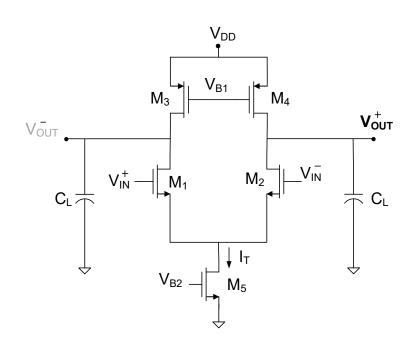
Reference Op Amp

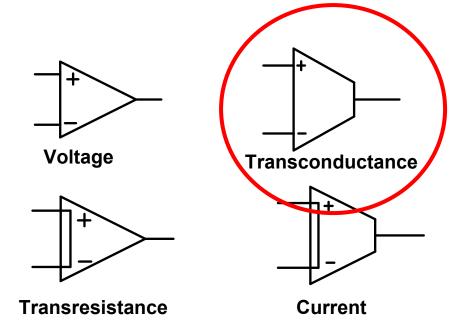
single-ended output

- This is probably the simplest differential input op amp and is widely used
- Will go to more complicated structures only if better performance is required

Amplifier Structure Summary

Small Signal Parameter Domain				
Common Source	$\mathbf{A}_{vo} = \frac{\mathbf{g}_{m}}{\mathbf{g}_{o}}$	$\mathbf{GB} = \frac{\mathbf{g}_{m}}{\mathbf{C}_{L}}$		
Practical Parameter Domain				
Common Source	$A_{VO} = \left(\frac{2}{\lambda}\right)\left(\frac{1}{V_{EB}}\right)$	$GB = \left(\frac{2P}{V_{DD}C_{L}}\right)\left(\frac{1}{V_{ER}}\right)$		


Small Signal Parameter Domain				
Reference Op Amp (single-ended ouput)	$A_{vo} = \frac{1}{2} \frac{g_{m1}}{g_{o1} + g_{o3}}$	$GB = \frac{g_{m1}}{2C_{L}}$	$SR = \frac{g_{01}}{\lambda C_L}$	

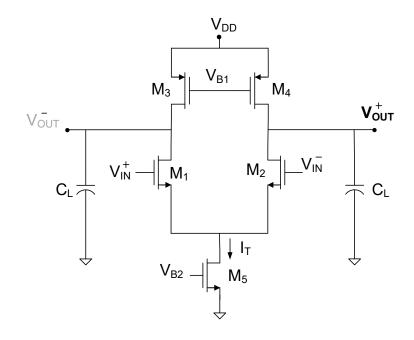

Practical Parameter Domain				
Reference Op Amp _(single-ended ouput)	$A_{\text{VO}} = \left[\frac{1}{\lambda_{_{1}} + \lambda_{_{3}}}\right] \left(\frac{1}{V_{_{\text{EB1}}}}\right)$	$GB = \left(\frac{P}{2V_{DD}C_{L}}\right) \bullet \left[\frac{1}{V_{EB1}}\right]$	$SR = \frac{P}{2V_{DD}C_{L}}$	

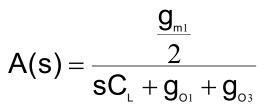
Reference Op Amp

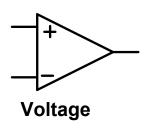
single-ended output

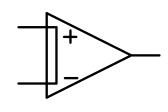
What basic type of amplifier is this op amp?

$$A(s) = \frac{g_{m1}}{2} \frac{g_{m1}}{sC_{L} + g_{o1} + g_{o3}}$$

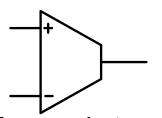

Reference Op Amp

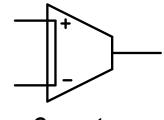

single-ended output


What basic type of amplifier is this op amp?


Does it really matter?

Transconductance





Transresistance

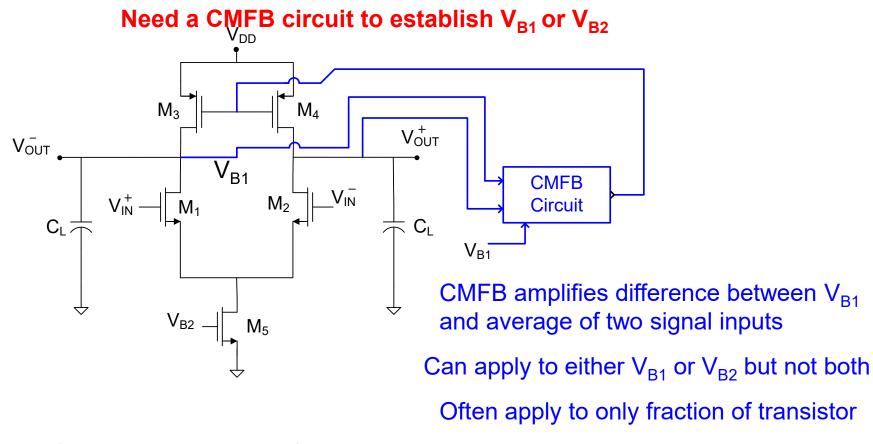
Transconductance

Current

Where we are at: Basic Op Amp Design

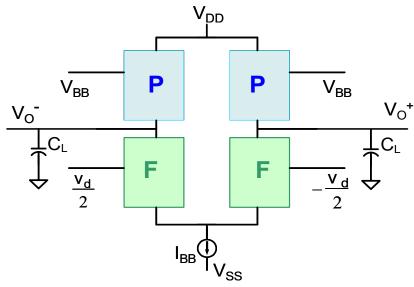
- Fundamental Amplifier Design Issues
- Single-Stage Low Gain Op Amps
 - Single-Stage High Gain Op Amps
 - Two-Stage Op Amp
 - Other Basic Gain Enhancement Approaches

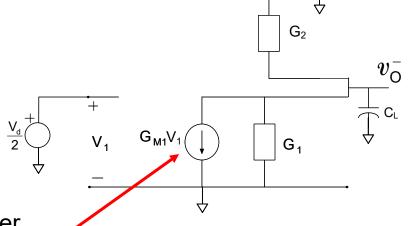
Where we are at:


Basic Op Amp Design

Single-Stage Low Gain Op Amps

5T Op Amp

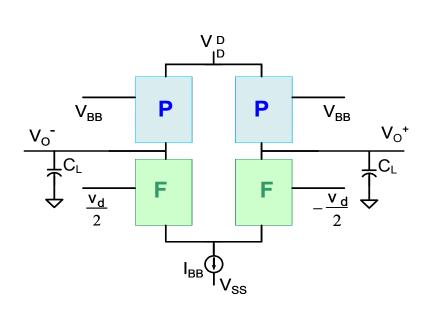

The 5T Op Amp


The CMFB circuit is often quite large and requires considerable design effort!

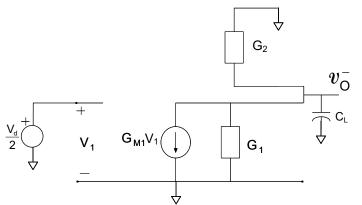
Can the CMFB be removed?

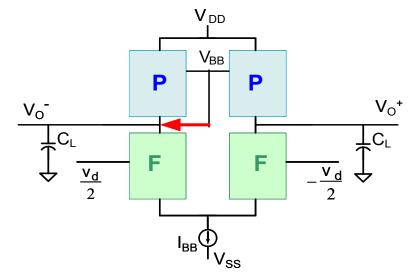
Operation of Op Amp – A conceptual observation

Small signal differential half-circuit

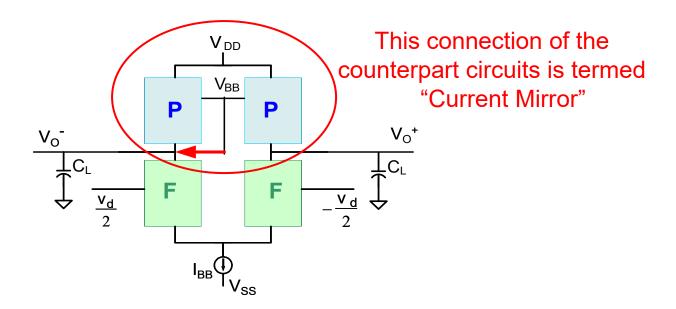

- The signal dependent current in quarter circuit is steered to output node and drives the parallel output conductances of the quarter circuit and counterpart circuit
- If G₁ and G₂ are small, the voltage gain will be large
- If the signal-dependent current could be doubled without changing the output conductances, the gain would be doubled as well!

$$A_{VO} = \frac{-G_{M1}}{2(G_1 + G_2)}$$

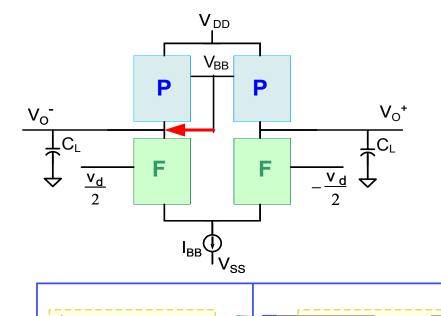

$$BW = \frac{G_1 + G_2}{C_L}$$


$$GB = \frac{G_{M1}}{2C_L}$$

Operation of Op Amp – A conceptual observation


Small signal differential half-circuit

- If the input impedance to the counterpart circuit is infinite and the quiescent values of the left and right drain voltages are the same, connecting the bias port of the counterpart circuit to V₀⁻ instead of to V_{BB} will cause the signal current in the right counterpart circuit to be equal to that in the left counterpart circuit
- Voltage Gain to V_{OUT}^- not high so this output seldom used
- This will approximately double the signal current steered to V_o⁺ and thus doubles the voltage gain! (formal derivation on following slide)
- This will also eliminate the need for a 28 it CMFB circuit!!


Terminology: "Current Mirror" connection

- Will now analyze this circuit to show the gain is doubled!
- Will follow this by a more detailed discussion of the Current Mirror

Doubling of Gain with "Current Mirror" connection

 $G_{M4}V_4$

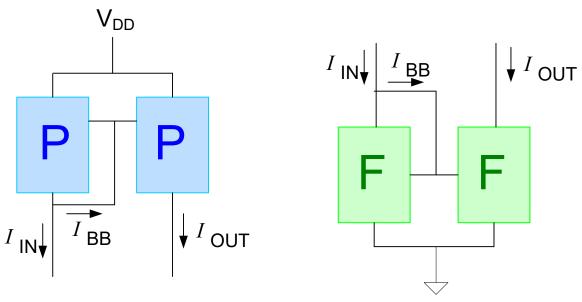
From KCL at two drain nodes $(V_{OUT}=V_O^+, V_Z=V_O^-)$

$$V_{OUT} \left(sC_{L} + G_{2} + G_{4} \right) + G_{M2} \frac{V_{d}}{2} + G_{M4} V_{Z} = 0$$

$$V_{Z} \left(G_{1} + G_{3} \right) + G_{M3} V_{Z} - G_{M1} \frac{V_{d}}{2} = 0$$

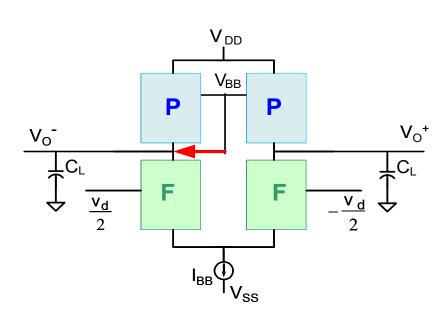
Eliminating V_7 we obtain

$$\frac{V_{OUT}}{V_{d}} = A_{VD} = -\frac{G_{M4}G_{M1} + G_{M2}G_{M3} + G_{M2}(G_{1} + G_{3})}{2(sC_{L} + G_{2} + G_{4})(G_{1} + G_{3} + G_{M3})}$$

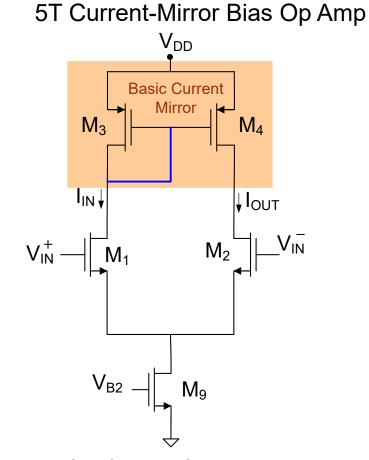

Assuming G_M's large compared to G's and left-right symmetry, it follows that

$$A_{VD} = -\frac{G_{M1}}{sC_L}$$

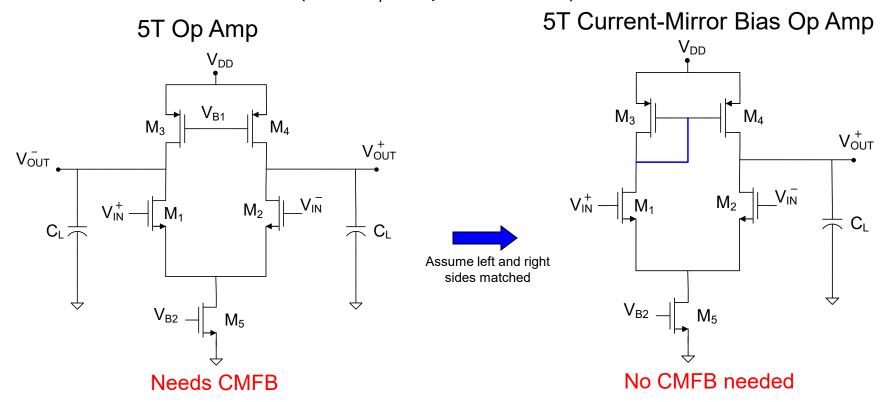
$$C_L + G_2 + G_4$$


$$dc \text{ Voltage Gain to } V_{OUT} \text{ doubled } !$$

Current Mirrors


- If the current I_{BB} is small compared to I_{IN} , and the current I_{IN} is nearly independent of the voltage across P, then $I_{OUT} \approx I_{IN}$
- Circuits with this property are called Current Mirrors
- If multiple copies of the right circuit are placed in parallel, the current will be scaled by the number of copies
- These scaled circuits are also called Current Mirrors
- As long as I_{BB}<<I_{IN}, this scaling in currents occurs even if the circuits are highly nonlinear provided the voltages across the circuits are the same!

Operation of Op Amp – A different perspective


Consider using single n-mos transistor as quarter circuit

 V_{SS}

- Note counterpart circuits can be recognized as the basic current mirror
- But other current mirrors that may differ from the counterpart circuit could also be 32 used (but then G_4 and G_2 may differ)

(with M₁ as quarter circuit)

- Can eliminate CMFB circuit <u>if only single-ended output is needed</u> by connecting counterpart circuits as a current mirror
- This will double the voltage gain and the GB as well
- Still uses counterpart circuits but terminated in different ways
- Although not symmetric, previous analysis results with specified modifications still nearly apply

Current-Mirror Connected Counterpart Circuit

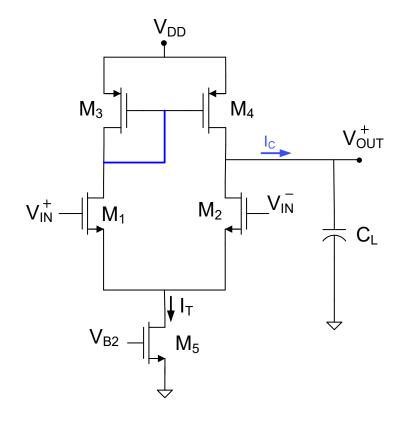
Assume left and right sides matched

No CMFB Circuit Needed

Slew Rate?

When Vd large and negative,

$$SR = -\frac{I_T}{C_I}$$


When Vd large and positive,

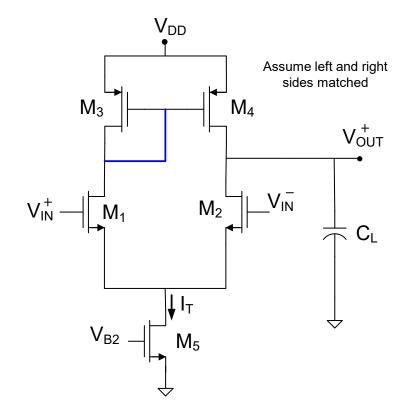
$$I_C = I_T$$

$$SR = \frac{I_T}{C_I}$$

In terms of practical parameter set

$$SR = \frac{P}{V_{DD}C_{L}}$$

$$V_{\scriptscriptstyle extstyle O} = V_{\scriptscriptstyle IN}^{\scriptscriptstyle +} - V_{\scriptscriptstyle IN}^{\scriptscriptstyle -}$$


Current-Mirror Connected Counterpart Circuit

No CMFB Circuit Needed

$$A(s) = \frac{g_{m1}}{sC_{L} + g_{O1} + g_{O3}}$$

$$A_{o} = \frac{g_{m1}}{g_{o1} + g_{o3}}$$

$$GB = \frac{g_{m1}}{C_{L}} \qquad SR = \frac{I_{T}}{C_{L}}$$

In terms of practical design space parameters

$$A_{_{0}} = \left[\frac{1}{\lambda_{_{1}} + \lambda_{_{3}}}\right] \left(\frac{2}{V_{_{EB1}}}\right) \qquad GB = \left(\frac{P}{V_{_{DD}}C_{_{L}}}\right) \bullet \left[\frac{1}{V_{_{EB1}}}\right] \qquad SR = \frac{P}{V_{_{DD}}C_{_{L}}}$$

Amplifier Comparison

Amp (single-ended ouput)

(5T Op Amp)

$$A_{vo} = \frac{1}{2} \frac{g_{m1}}{g_{o1} + g_{o3}}$$
 $GB = \frac{g_{m1}}{2C_{L}}$

$$GB = \frac{g_{m1}}{2C}$$

$$SR = \frac{g_{01}}{\lambda C_L}$$

Practical Parameter Domain

Reference Op

Amp (single-ended ouput)

(5T Op Amp)

$$\mathbf{A}_{\text{\tiny VO}} = \left[\frac{1}{\lambda_{_{1}} + \lambda_{_{3}}}\right] \left(\frac{1}{V_{_{\text{\tiny EB1}}}}\right)$$

$$A_{VO} = \left[\frac{1}{\lambda_{1} + \lambda_{3}}\right] \left(\frac{1}{V_{EB1}}\right) GB = \left(\frac{P}{2V_{DD}C_{L}}\right) \bullet \left[\frac{1}{V_{EB1}}\right] SR = \frac{P}{2V_{DD}C_{L}}$$

$$SR = \frac{P}{2V_{DD}C_{L}}$$

Small Signal Parameter Domain

Op Amp with CM Load and M₁ QC (5T Op Amp wCM)

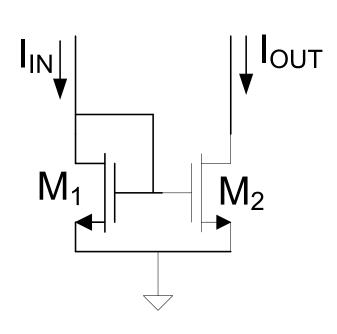
$$A_{VO} = \frac{g_{m1}}{g_{O1} + g_{O3}}$$

$$GB = \frac{g_{m1}}{C_l}$$

$$SR = 2 \frac{g_{01}}{\lambda C_1}$$

Practical Parameter Domain

Op Amp with CM Load and M₁ QC (5T Op Amp wCM)

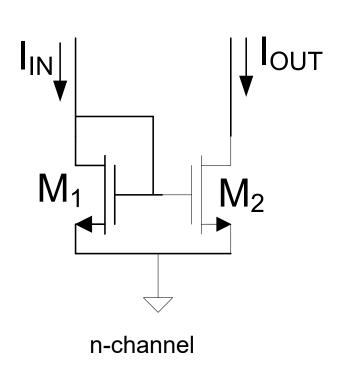

$$A_{\text{V0}} = \!\! \left[\frac{2}{\lambda_{1} + \lambda_{3}} \right] \!\! \left(\frac{1}{V_{\text{EB1}}} \right)$$

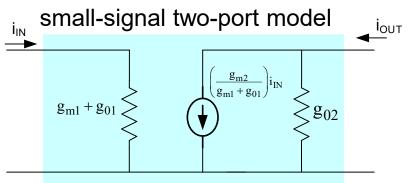
$$SR = \frac{P}{V_{DD}C_{L}}$$

Current Mirrors

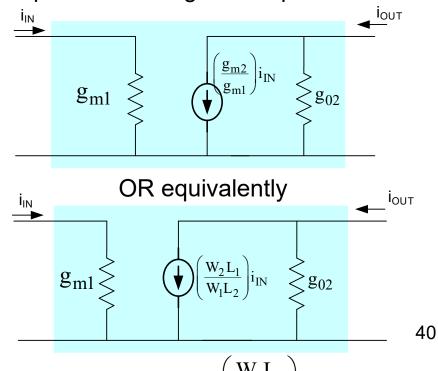
- Current mirrors are really just current amplifiers
- Current mirror (from counterpart circuit) can be used to eliminate CMFB and double gain in basic op amp
- Many different current mirrors exist with varying levels of performance (performance with some better than counterpart current mirror)
- Current mirror not necessarily from counterpart of quarter circuit but often is

Basic Current Mirror

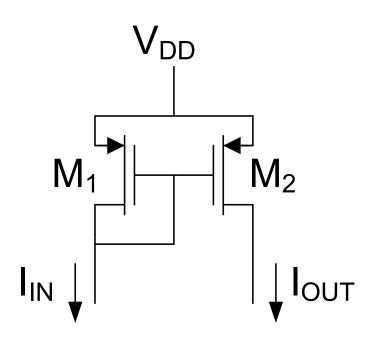

$$I_{IN} = \frac{\mu C_{OX} W_1}{2L_1} (V_{GS1} - V_T)^2$$


$$I_{OUT} = \frac{\mu C_{OX} W_2}{2L_2} (V_{GS2} - V_T)^2$$

$$\frac{I_{OUT}}{I_{III}} = \frac{W_2}{W_4} \frac{L_1}{I_{II}}$$


n-channel

Basic Current Mirror

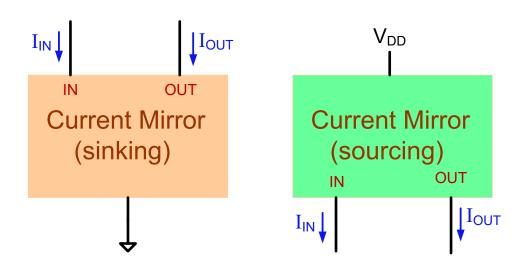


Simplified small-signal two-port model

If
$$g_{02}$$
 is neglected $i_{OUT} = \left(\frac{W_2L_1}{W_1L_2}\right)i_{IN}$

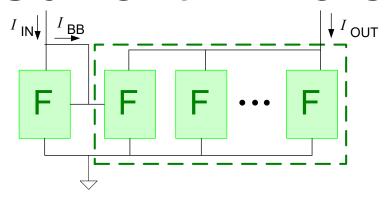
Basic Current Mirror

$$I_{IN} = \frac{\mu C_{OX} W_1}{2L_1} \left(V_{GS1} \text{-} V_T \right)^2$$


$$I_{OUT} = \frac{\mu C_{OX} W_2}{2L_2} (V_{GS2} - V_T)^2$$

$$\frac{I_{OUT}}{I_{IN}} = \frac{W_2}{W_1} \frac{L_1}{L_2}$$

p-channel


Since counterpart of n-channel current mirror, small signal models identical

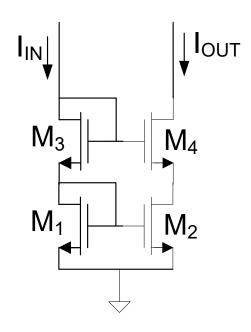
Current Mirrors

- More advanced current mirrors exist
- Several of these are discussed in the text

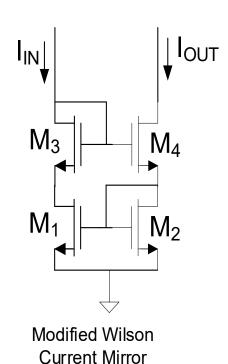
Current Mirrors

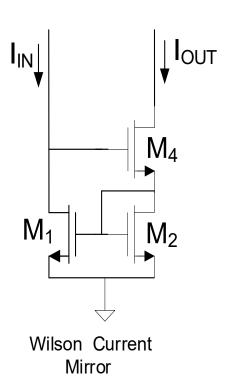
K copies of F on right

$$I_{OUT} = KI_{IN}$$

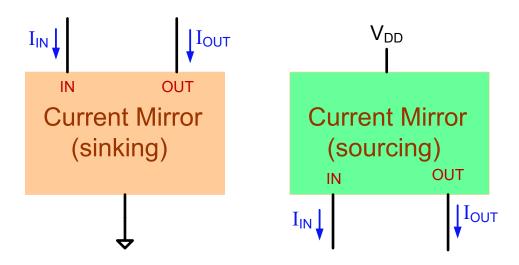

- Quarter circuits with high output impedance are useful for building current mirrors
- Replication of K copies is often simply denoted as a device sizing or scaling factor

Properties of Current Mirrors of Interest:

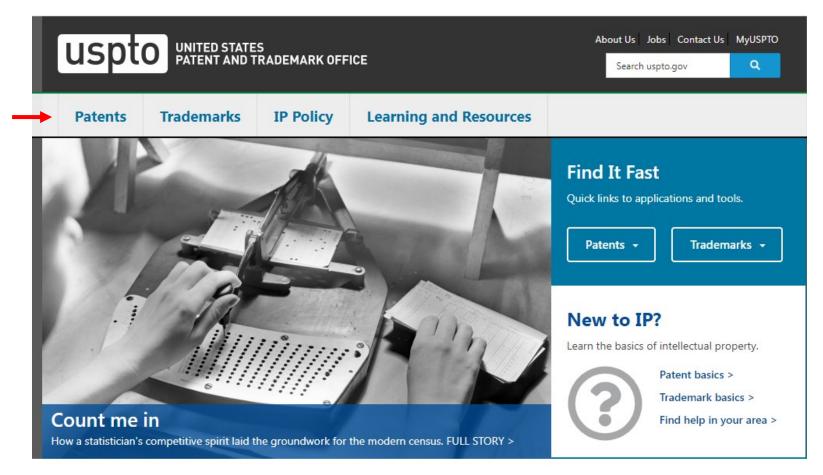

- Mirror Gain Accuracy
- Signal Swing at Output
- Output Impedance (ideally infinite)

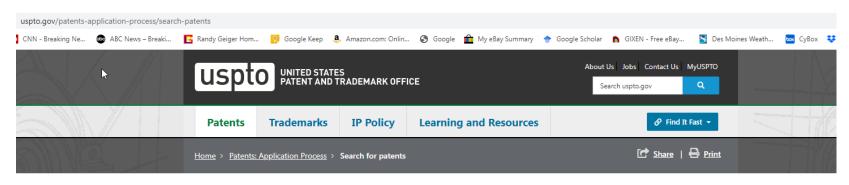

More advanced current mirrors usually offer improvements in one or more of these properties but at the expense of another of these properties.

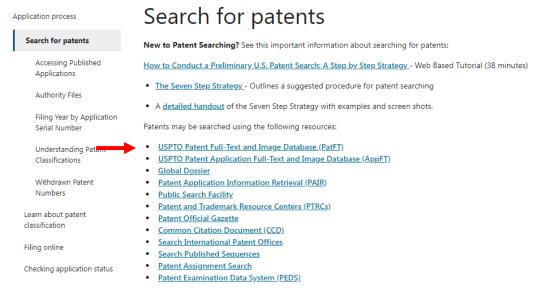
More Advanced Current Mirrors



Cascode Current Mirror




Current Mirrors



- The concept of the current mirror was first introduced in about 1969 (not certain who introduced it but probably Wheatley and Wittlinger)
- Many of the basic current mirror circuits were introduced within a few years after the concept first appeared
- How many current mirror circuits are there?
- Have any current mirrors been introduced recently?
- Is there still an opportunity to contribute to the current mirror field?

Consider only US patents

USPTO search on Jan 27, 2022

612 patents with "current" and "mirror" in title since 1976

PAT. NO.	Title
1 11,188,112	T Current mirror arrangements with adjustable offset buffers
2 11,152,944	Termination calibration scheme using a current mirror
3 11,106,233	T Current mirror arrangements with reduced input impedance
4 11,068,010	T Current mirror circuit
5 11,050,424	Current-mirror based level shifter circuit and methods for implementing the same
6 10,964,743	Imaging device comprising current mirror circuit
7 10,943,656	Methods and apparatuses having a voltage generator with an adjustable voltage drop for representing a voltage drop of a memory o
8 <u>10,895,887</u>	Current mirror arrangements with reduced sensitivity to buffer offsets
9 10,877,503	Attenuating common mode noise current in current mirror circuits
10 10,845,839	Current mirror arrangements with double-base current circulators
11 <u>10,839,879</u>	Read techniques for a magnetic tunnel junction (MTJ) memory device with a current mirror
12 <u>10,756,509</u>	Accurate current mirror circuit in low voltage headroom applied to laser drivers
13 10,698,435	Electronic current equalization module, current mirror circuit and method of assembling a current mirror circuit
14 <u>10,671,911</u>	Current mirror scheme for an integrating neuron circuit
15 <u>10,620,656</u>	Operating voltage switching device with current mirror
16 <u>10,593,499</u>	Relay drive circuit with a current mirror circuit
17 <u>10,574,141</u>	Current mirror calibration circuit and current mirror calibration method
18 <u>10,509,431</u>	Reversible current mirror and its use in bidirectional communication
19 10,496,121	Current mirror circuit and driving method of the current mirror circuit
20 10,444,364	Pinned photodiode pixels including current mirror-based background light suppression, and imaging devices including the same

USPTO search on Feb 2, 2021

605 patents with "current" and "mirror" in title since 1976

PAT. NO.	Title
1 10,895,887 ☐ Current mirror arrangements with reduced sensitivity to buffer o	<u>ffsets</u>
2 10,877,503 ■ Attenuating common mode noise current in current mirror circuit	<u>ts</u>
3 10,845,839 ☐ Current mirror arrangements with double-base current circulator	<u>s</u>
4 10,839,879 ■ Read techniques for a magnetic tunnel junction (MTJ) memory of	
5 10,756,509 ▲ Accurate current mirror circuit in low voltage headroom applied	to laser drivers
6 10,698,435 ■ Electronic current equalization module, current mirror circuit an	d method of assembling a current mirror circuit
7 10,671,911 Current mirror scheme for an integrating neuron circuit	
8 10,620,656 Operating voltage switching device with current mirror	
9 10,593,499 Relay drive circuit with a current mirror circuit	
10 10,574,141 Current mirror calibration circuit and current mirror calibration in	<u>nethod</u>
11 10,509,431 Reversible current mirror and its use in bidirectional communication	
12 10,496,121 Current mirror circuit and driving method of the current mirror of	
13 10,444,364 Pinned photodiode pixels including current mirror-based background	ound light suppression, and imaging devices including the same
14 10,439,562 Current mirror bias compensation circuit	
15 10,419,057 Modified current mirror circuit for reduction of switching time	
16 10,386,880 Circuit arrangement for compensating current variations in curre	
17 10,373,681 Methods and apparatuses having a voltage generator with an adj	ustable voltage drop for representing a voltage drop of a memor
18 10,353,421 Current mirror device and related amplifier circuit	
19 10,340,004 Write voltage generating circuit comprising a current mirror	
20 10,332,590 Static random access memory (SRAM) bit cells employing curre	
21 10,331,844 Methods of tuning current ratio in a current mirror for transistors	
22 10,317,925 Attenuating common mode noise current in current mirror circuit	<u>ts</u>
23 10,228,713 Large range current mirror	
24 10,133,293 Low supply active current mirror	
25 10,133,292 Low supply current mirror	

USPTO search on Jan 24, 2020

PAT. NO.

595 patents with "current" and "mirror" in title since 1976

Title

	IAI. NO.	Title
1	10,509,431	Reversible current mirror and its use in bidirectional communication
2	10,496,121	Current mirror circuit and driving method of the current mirror circuit
3	10,444,364	Pinned photodiode pixels including current mirror-based background light suppression, and imaging devices including the same
4	10,439,562	Current mirror bias compensation circuit
5	10,419,057 ³	Modified current mirror circuit for reduction of switching time
6	10,386,880 ¹	Circuit arrangement for compensating current variations in current mirror circuit
7	10,373,681	Methods and apparatuses having a voltage generator with an adjustable voltage drop for representing a voltage drop of a memory ce
8	10,353,421	Current mirror device and related amplifier circuit
9	10,340,004	Write voltage generating circuit comprising a current mirror
10	0 <u>10,332,590</u> <mark>1</mark>	Static random access memory (SRAM) bit cells employing current mirror-gated read ports for reduced power consumption
11	1 <u>10,331,844</u> <mark>1</mark>	Methods of tuning current ratio in a current mirror for transistors formed with the same FEOL layout and a modified BEOL layout
12	2 <u>10,317,925</u> <mark>1</mark>	Attenuating common mode noise current in current mirror circuits
13	3 <u>10,228,713</u> <mark>1</mark>	Large range current mirror
14	4 <u>10,133,293</u> <mark>1</mark>	Low supply active current mirror
15	5 <u>10,133,292</u> <mark>1</mark>	Low supply current mirror
16	5 <u>10,095,259</u> <mark>1</mark>	Circuit arrangement for compensating current variations in current mirror circuit
17	7 <u>10,089,929</u> <mark>7</mark>	Pixel driver circuit with load-balance in current mirror circuit
18	8 <u>10,076,326</u> <mark>1</mark>	Surgical stapler having current mirror-based motor control
19	9 <u>10,054,974</u> <mark>1</mark>	Current mirror devices using cascode with back-gate bias
20	0 <u>10,038,431</u> ¹	Current mirror array for high-frequency clock generator

USPTO search on Jan 21, 2018

569 patents with "current" and "mirror" in title since 1976

	PAT. NO.	Title
1	9.864.395 Base current compensation for a BJT current mirror	
2	9.857.824 Calibration of a resistor in a current mirror circuit	
3	9.829.906 Current mirror circuit and receiver using the same	
4	9.787.178 Current mirror circuit and charge pump circuit	
5	9.746,871 Noise canceling current mirror circuit for improved PSR	
6	9.740.232 Current mirror with tunable mirror ratio	
7	9.728.256 Methods and apparatuses having a voltage generator with an adjustable voltage drop for repre	senting a voltage drop
8	9.713.212 Current mirror circuit and method	
9	9.693.417 LED mains voltage measurement using a current mirror	
10	9.680.483 Current mirror circuit and charge pump circuit	
	9.671.228 Floating current mirror for RLG discharge control	
12	9.641.167 Current mirror circuits with narrow bandwidth bias noise reduction	
	9.638.584 Differential temperature sensor with sensitivity set by current-mirror and resistor ratios without	it limiting DC bias
	9.632.522 Current mirror bias circuit with voltage adjustment	
	9.622.303 Current mirror and constant-current LED driver system for constant-current LED driver IC de	
16	9.595.310 🍱 Circuits for control of time for read operation, using a current mirror circuit to mirror a referen	ice current into the du
	9.563.223 Low-voltage current mirror circuit and method	
18	9.559.641 Current mirror, control method, and image sensor	
	9.548.022 Pixel and organic light emitting display device including current mirror	
20	9.497.402 Image lag mitigation for buffered direct injection readout with current mirror	

USPTO search on Jan 26, 2014

509 patents with "current and mirror" in title since 1976

Results of Search in US Patent Collection db for: TTL/(current AND mirror): 509 patents. Hits 1 through 50 out of 509 Next 50 Hits Jump To Refine Search | TTL/(current AND mirror) PAT. NO. 1 8.618.787 Current mirror and high-compliance single-stage amplifier 2 8,598,953 System and method for pre-charging a current mirror 3 8.598.914 Comparator circuit with current mirror 4 8.587.287 THigh-bandwidth linear current mirror 5 8.575.971 Current mirror and current cancellation circuit 6 8.569.674 Multiplexed photocurrent monitoring circuit comprising current mirror circuits 7 8,537,868 T Laser diode write driver feedback, current mirror, and differential-pair circuitry 8 8.531,236 Current mirror arrangement and method for switching on a current 9 8.519.794 Current mirror with low headroom and linear response 10 8.511.842 Eddy current based mirror wavefront control 11 8.502.751 Pixel driver circuit with load-balance in current mirror circuit 12 8,471,631 T Bias circuit, power amplifier, and current mirror circuit 13 8.456.227 T Current mirror circuit 14 8.450.992 Wide-swing cascode current mirror 15 8.441.381 Gate leakage compensation in a current mirror

USPTO search on Jan 22, 2012

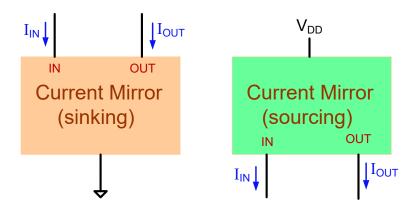
475 patents with "current and mirror" in title since 1976

Searching US Patent Collection...

Results of Search in US Patent Collection db for:

TTL/(current AND mirror): 475 patents.

Hits 1 through 50 out of 475

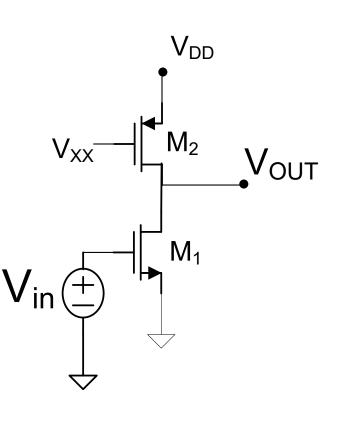

USPTO search on Jan 27, 2022

612 patents with "current and mirror" in title between 1976 and 2021

7 patents with "current and mirror" in title in 2021

- Averaged 12.4 patents/year from 1976 to 2006
- Averaged 17 patents/year in 2012 and 2013
- Averaged 13 patents/year in 2016 and 2017
- Averaged 13 patents/year in 2018 and 2020
- 7 patents from Feb 2, 2021 to Jan 27, 2022

USPTO search on Jan 21, 2018



612 patents with "current and mirror" in title since 1976

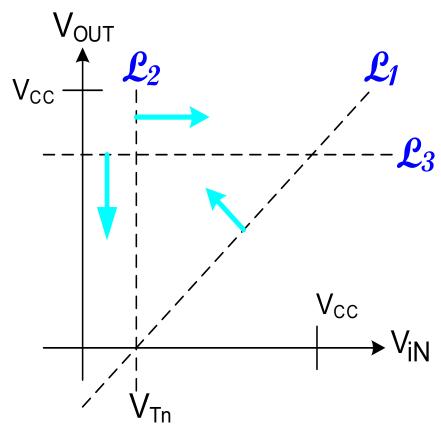
Number of patents/year in past decade is still close to the 3-decade average

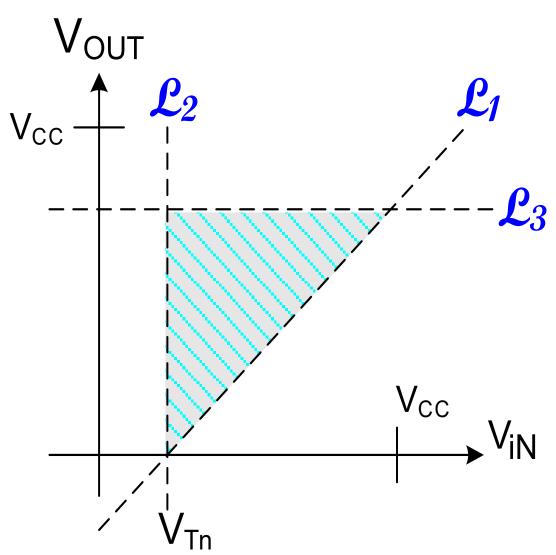
Is there still an opportunity to contribute to the current mirror field?

Consider single-input amplifier first

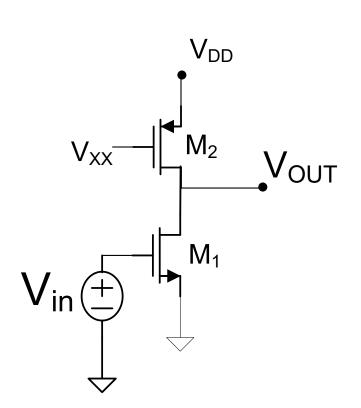
To keep M₁ out of Triode Region

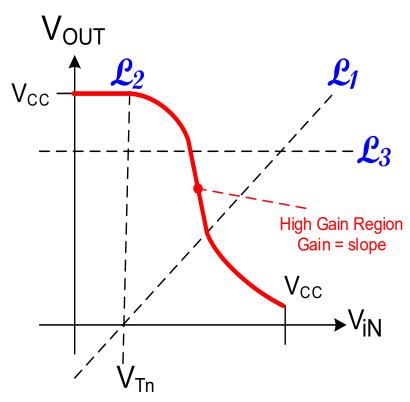
$$\mathcal{L}_1$$
: $V_{OUT} > V_{iN} - V_{Tn}$


To keep M₁ out of Cutoff

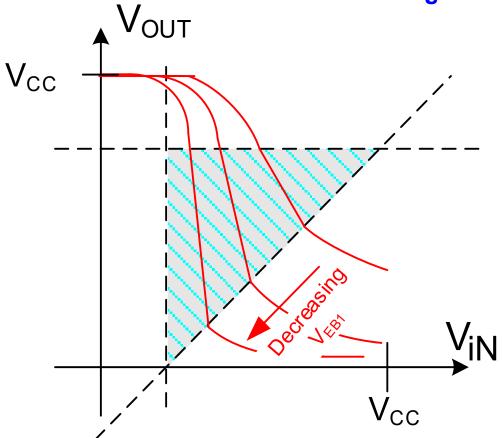

$$\mathcal{L}_2$$
: $V_{iN} > V_{Tn}$

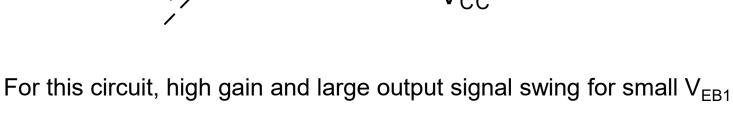
To keep M₂ out of Triode Region


$$\mathcal{L}_{3}$$
: $|V_{OUT} - V_{DD}| > |V_{XX} - V_{DD} - V_{Tp}|$
 $V_{XX} - V_{Tp} > V_{OUT}$


```
\mathcal{L}_{1}: V_{OUT} > V_{iN} - V_{Tn}
\mathcal{L}_{2}: V_{iN} > V_{Tn}
\mathcal{L}_{3}: V_{XX} - V_{Tp} > V_{OUT}
```


 $\mathcal{L}_{I}: V_{OUT} > V_{iN}-V_{Tn}$ \mathcal{L}_2 : $V_{iN} > V_{Tn}$ \mathcal{L}_3 : $V_{XX} - V_{Tp} > V_{OUT}$




Transfer Characteristics of amplifier

How do the transfer characteristics relate to the signal swing?

Observe signal swing boundaries are same as operating region changes for transfer characteristics

How do the transfer characteristics relate to the signal swing?

 V_{DD}

 M_2

Stay Safe and Stay Healthy!

End of Lecture 5